
IP Media Server for Host Media
Processing
Demo Guide

July 2005

05-2389-003

IP Media Server for HMP Demo Guide – July 2005

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

This IP Media Server for Host Media Processing Demo Guide as well as the software described in it is furnished under license and may only be used
or copied in accordance with the terms of the license. The information in this manual is furnished for informational use only, is subject to change
without notice, and should not be construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any
errors or inaccuracies that may appear in this document or any software that may be provided in association with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means without express written consent of Intel Corporation.

Copyright © 2003, Intel Corporation

BunnyPeople, Celeron, Chips, Dialogic, EtherExpress, ETOX, FlashFile, i386, i486, i960, iCOMP, InstantIP, Intel, Intel Centrino, Intel Centrino logo,
Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure,
Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Xeon, Intel XScale, IPLink, Itanium, MCS, MMX, MMX logo, Optimizer logo, OverDrive,
Paragon, PDCharm, Pentium, Pentium II Xeon, Pentium III Xeon, Performance at Your Command, skoool, Sound Mark, The Computer Inside., The
Journey Inside, VTune, and Xircom are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other
countries.

* Other names and brands may be claimed as the property of others.

Publication Date: July 2005

Document Number: 05-2389-003

Intel Converged Communications, Inc.
1515 Route 10
Parsippany, NJ 07054

For Technical Support, visit the Intel Telecom Support Resources website at:
http://developer.intel.com/design/telecom/support

For Products and Services Information, visit the Intel Telecom Products website at:
http://www.intel.com/design/network/products/telecom

For Sales Offices and other contact information, visit the Where to Buy Intel Telecom Products page at:
http://www.intel.com/buy/networking/telecom.htm

http://developer.intel.com/design/telecom/support
http://www.intel.com/design/network/products/telecom
http://www.intel.com/buy/networking/telecom.htm

IP Media Server for HMP Demo Guide – July 2005 3

Contents

Revision History . 7

About This Publication . 9

1 Demo Description . 11

2 System Requirements . 13

2.1 Hardware Requirements . 13
2.2 Software Requirements . 14

3 Preparing to Run the Demo . 15

3.1 Editing Configuration Files. 15
3.1.1 Configuration File Location . 15
3.1.2 Editing the IPMediaServer.cfg Configuration File . 15

3.2 Compiling and Linking . 18

4 Running the Demo . 19

4.1 Starting the Demo . 19
4.2 Demo Options . 19
4.3 Using the Demo . 20

4.3.1 Keyboard Commands . 20
4.3.2 Using the Media Server . 20

4.4 Stopping the Demo . 24

5 Demo Details . 25

5.1 Files Used by the Demo . 25
5.1.1 Demo Source Code Files . 25
5.1.2 PDL Files . 28

5.2 Programming Model . 28
5.2.1 Module Structure . 29
5.2.2 EventRouter . 30
5.2.3 Interfaces . 31
5.2.4 Classes . 31

5.3 Threads . 39
5.4 Initialization . 39
5.5 Event Handling . 41

5.5.1 Event Mechanism . 41
5.5.2 Handling Keyboard Input Events . 41
5.5.3 Handling SRL Events . 41
5.5.4 Handling Application Exit Events . 41
5.5.5 TSUsrEvent Structure. 42

5.6 Typical Scenario . 42

Glossary . 51

Index . 55

4 IP Media Server for HMP Demo Guide – July 2005

Contents

Figures

1 Demo Voice Menu Flowchart . 23
2 IP Media Server Demo Architecture . 29
3 EventRouter . 30
4 IP Media Server Demo Threads . 39
5 System Initialization . 40
6 Typical Scenario: Call Offered . 43
7 Typical Scenario: Play Prompts . 44
8 Typical Scenario: Fax Mailbox . 45
9 Typical Scenario: Establish Fax Session . 46
10 Typical Scenario: Fax Session Established . 47
11 Typical Scenario: Fax Sent. 48
12 Typical Scenario: Fax Session Closed . 49
13 Typical Scenario: Fax Complete. 49

IP Media Server for HMP Demo Guide – July 2005 5

Contents

Tables

1 Command Line Switches . 19
2 Runtime Keyboard Commands . 20
3 Files in IPMediaServer Folder Used by the IP Media Server Demo . 25
4 Files in Modules Folder Used by the IP Media Server Demo . 26
5 PDL Files Used by the IP Media Server Demo . 28
6 Application Classes . 31
7 IP Module Classes. 32
8 Voice Module Classes . 35
9 Fax Module Classes . 37

6 IP Media Server for HMP Demo Guide – July 2005

Contents

IP Media Server for HMP Demo Guide — July 2005 7

Revision History

This revision history summarizes the changes made in each published version of this document.

Document No. Publication Date Description of Revisions

05-2389-003 July 2005 Added updated Linux information.

05-2389-002 April 2005 Globally changed file paths to use installation directory environment variable, and to
reflect latest Windows directory hierarchy

Globally removed Linux-specific information and references to pre-1.3 HMP releases

Demo Description chapter : Added note about channel density and numbering
restrictions

Demo Voice Menu Flowchart figure: Multiple minor updates for clarity

05-2389-001 September 2004 Initial version under this title and part number as an HMP-specific document. Much of
the information contained in this document was previously published in the IP Media
Server (Global Call) Demo Guide for Windows Operating Systems, document
number 05-2065-001. The following changes were made in preparing this document:

Software Requirements section: Added HMP 1.2 Linux and HMP 1.1 Windows FP1
releases with description of differences

Configuration File Location section: Added location info for Linux

Editing the IPMediaServer.cfg Configuration File section: Updated descriptions of
QoS attributes to match IPML API Reference. Updated sample configuration file
listing.

Compiling and Linking section: Added compile info for Linux

Starting the Demo section: Added file location info for Linux

Using the Media Server section: Added CSP Barge-in to Main Menu listing.
Corrected description of CSP Prompt.

Demo Voice Menu Flowchart figure: Corrected description of CSP Prompt. Clarified
descriptions of fax prompts.

Demo Source Code Files section: Added Linux directory info. Added Linux makefiles
to file lists.

PDL Files section: Added file location info for Linux. Added Linux makefile to file list.

Application Classes table: Changed module order (now IP last) in description of init
method

Initialization section: Changed module initialization order (now IP last)

System Initialization figure: Changed module initialization order (now IP last)

Handling Application Exit Events section: Deleted Ctrl+C

TSUsrEvent Structure section: Updated field descriptions

8 IP Media Server for HMP Demo Guide — July 2005

Revision History

IP Media Server for HMP Demo Guide — July 2005 9

About This Publication

This section describes the purpose of the guide, the intended audience, and provides references to
other documents that may be useful to the user.

• Purpose

• Intended Audience

• How to Use This Publication

• Related Information

Purpose

This guide provides information on the IP Media Server for HMP demo that is available with the
Intel NetStructure® Host Media Processing Software product. The guide describes the demo, lists
its requirements, and provides details on how it works.

This guide specifically documents the IP Media Server for HMP demo as it is implemented and
supplied in the Host Media Processing Software 1.3 for Windows*, Host Media Processing
Software 1.5 for Linux* and later releases.

Note that the IP Media Server demo that is supplied with Intel® Dialogic® System Release 6.x
software has significantly different functionality than the Host Media Processing implementation,
and is therefore described in a separate Demo Guide document.

Intended Audience

This guide is intended for application developers who will be developing a media server
application using the Global Call API. Developers should be familiar with the C++ programming
language and either the Windows or Linux programming environments.

This information is intended for:

• Distributors

• Toolkit Developers

• Independent Software Vendors (ISVs)

• Value Added Resellers (VARs)

• Original Equipment Manufacturers (OEMs)

10 IP Media Server for HMP Demo Guide — July 2005

About This Publication

How to Use This Publication

Refer to this publication after you have installed the hardware and the system software.

This publication assumes that you are familiar with the Windows or Linux operating system and
the C++ programming language.

The information in this guide is organized as follows:

• Chapter 1, “Demo Description” introduces you to the demo and its features

• Chapter 2, “System Requirements” outlines the hardware and software required to run the
demo

• Chapter 3, “Preparing to Run the Demo” describes the preparations required before running
the demo

• Chapter 4, “Running the Demo” describes how to run the demo

• Chapter 5, “Demo Details” provides details on how the demo works

Related Information

See the following for more information:

• Intel NetStructure Host Media Processing Software Release Guide

• Global Call IP for Host Media Processing Technology Guide

• Global Call API Library Reference

• Voice API Programming Guide

• Voice API Library Reference

• Standard Runtime Library API Programming Guide

• Standard Runtime Library API Library Reference

• Fax Software Reference

• http://developer.intel.com/design/telecom/support/ (for technical support)

• http://www.intel.com/design/network/products/telecom (for product information)

http://developer.intel.com/design/telecom/support/
http://www.intel.com/design/network/products/telecom

IP Media Server for HMP Demo Guide — July 2005 11

11.Demo Description

This chapter describes the basic features of the IP Media Server for HMP demo.

The IP Media Server for HMP demo is an object-oriented host-based application that demonstrates
using the Global Call API to build an IP media server, providing voice and fax services via IP
technology. The demo source code can be used as sample code for those who want to begin
developing an application from a working application.

Note: The IP Media Server for HMP demo is limited to a maximum of four simultaneous channels.
Additionally, the channel numbers used must be below 120; the demo will fail to run if you attempt
to use a channel number higher than 120.

The IP Media Server for HMP demo supports the following features:

• Voice service

• Fax service

• CSP barge in

• Configuration file

• Command line options

Note: The IP Media Server for HMP demo does not function as a gateway. Therefore, it can only answer
calls from the IP network. Gateway functionality can be added by writing additional software code
within the IP module that will allow it to make outgoing calls to the IP network, and connecting a
gateway to interface with the PSTN.

The IP Media Server for HMPIP Media Server (Global Call) demo is a cross-OS demo, designed to
run under both the Windows and Linux environments. Most of the differences in the environments
are handled directly by the programming interface and are transparent to the user. Other
differences, due to inherent differences in the operating systems, are handled by the Platform
Dependency Library (PDL). For more information about the PDL refer to the source code in the
pdl_win or pdl_linux directories directory.

12 IP Media Server for HMP Demo Guide — July 2005

Demo Description

IP Media Server for HMP Demo Guide — July 2005 13

22.System Requirements

This chapter discusses the system requirements for running the IP Media Server for HMP demo. It
contains the following topics:

• Hardware Requirements . 13

• Software Requirements . 14

2.1 Hardware Requirements

To run the IP Media Server for HMP demo, you need:

• Intel® Pentium® III processor (minimum requirement). For detailed processor clock speed and
memory requirements, refer to the Release Guide (or Release Notes) for the HMP version you
are using.

• CD-ROM drive

• VGA display

• Pointing device (e.g., mouse)

• 100Base-T network interface card (NIC)

Note: A 1000Base-T NIC will yield better performance.

Memory Requirements

For production purposes, a minimum of 512 MB of memory is required. For development and
demo purposes using a low-end configuration, 256 MB of memory may be sufficient.

IP Endpoints

The following H.323 IP devices were tested for interoperability with HMP:

• Microsoft* NetMeeting* (Version 3.0 or later)

• Polycom* SoundPoint* IP 500

• Intel NetStructure® PBX-IP Media Gateway

• Intel Optimizers Internet Phone

The following SIP IP devices were tested for interoperability with HMP:

• Polycom SoundPoint IP 500

• Intel NetStructure PBX-IP Media Gateway

14 IP Media Server for HMP Demo Guide — July 2005

System Requirements

2.2 Software Requirements

To run the IP Media Server for HMP demo as documented in this guide, you need one of the
following software releases:

• Intel NetStructure Host Media Processing Software 1.3 for Windows (or later)

• Intel NetStructure Host Media Processing Software 1.5 for Linux (or later)

For operating system requirements, see the release documentation (Release Guide or Release
Notes) that accompanies your specific HMP release.

IP Media Server for HMP Demo Guide — July 2005 15

33.Preparing to Run the Demo

This chapter discusses the preparations necessary to run the IP Media Server for HMP demo. It
provides information about the following topics:

• Editing Configuration Files . 15

• Compiling and Linking . 18

3.1 Editing Configuration Files

This section discusses how to configure the demo for your system. It contains the following topics:

• Configuration File Location

• Editing the IPMediaServer.cfg Configuration File

3.1.1 Configuration File Location

Before running the IP Media Server for HMP demo, modify the IPMediaServer.cfg file to reflect
your system environment. Use a text editor and open the file from the following location:

Windows

$(INTEL_DIALOGIC_DIR)\Demos\IPMediaServer\Release

Linux

$(INTEL_DIALOGIC_DIR)/demos/IPMediaServer/Release

3.1.2 Editing the IPMediaServer.cfg Configuration File

Below is an example of the IPMediaServer.cfg file. Update the following information:

ipProtocolName
The IP protocol for opening IP line devices. Possible vlues are:

• H323
• SIP
• both

DTMFmode
Specifies how DTMF tones are transmitted. Possible values are:

• OutofBand – usually used with low bandwith coders, such as GSM
Note: OutofBand is used for H.323 only.

16 IP Media Server for HMP Demo Guide — July 2005

Preparing to Run the Demo

• InBand – usually used with G.711 coders
• RFC2833

Capability
Describes the transmit and receive coders. See the Global Call IP Technology Guide for
specific information about coder support. The parameters are as follows:

• TxType – the transmit voice coder

Note: By default, the fax demo is turned off. This feature may be enabled when tested with
T.38 capable IP endpoints. To do this, “uncomment” the line TxType = t38UDPFax
in this section by removing the # from the start of the line, or add the line if not
present.

• TxFramesPerPkt – the number of frames per packet for the selected Tx coder
• TxVAD – specifies if VAD is active for the selected Tx coder
• RxType – the receive voice coder
• RxFramesPerPkt – the number of frames per packet for the selected Rx coder

Note: The G.711 coder defines frames per packet using the packet size in milliseconds, i.e.
10, 20, or 30 milliseconds. Refer to the Sample Configuration File, below, for the
correct syntax for all the parameters.

• RxVAD – specifies if VAD is active for the selected Rx coder

Quality of Service
The application can set threshold values to monitor the quality of service during calls. A fault
occurs when the result of a measurement of a QoS parameter crosses a predefined threshold. A
success occurs when the result of a measurement of a QoS parameter dis not cross a predefined
threshold. The QoS parameters are measured during time intervals, starting when a call is
established. The following parameters are supported:

• MediaAlarmLostPackets – monitors the number of lost IP packets during a call
• MediaAlarmJitter – monitors the jitter (as defined in RFC 1889) during IP transmission

QoS Attributes
The threshold for each QoS parameter is measured with the following six attributes:

• Threshold – defines when a QoS parameter is in a fault condition. A fault occurs when the
result of a measurement of a QoS parameter crossed the Threshold value.

• DebounceOn – the time during which faults are measured (in msec., must be multiple of
Interval)

• DebounceOff – the time during which successes are measured (in msec., must be multiple
of Interval)

• Interval – the amount of time between two QoS parameter measurements (in multiples of
100 msec)

• Percent_Fail – used to detect failure condition, together with DebounceOn (expressed as
a percentage of failures)

• Percent_Success – used to detect failure recovery, together with DebounceOff (expressed
as a percentage of successes)

The default values are as follows:

QoS Type Threshold DebounceOn DebounceOff Interval
Percent_

Fail
Percent_
Success

Lost packets 20 10000 10000 1000 60 40

Jitter 60 20000 60000 5000 60 40

IP Media Server for HMP Demo Guide — July 2005 17

Preparing to Run the Demo

Sample Configuration File

##
IP Protocol :
The IP Protocol used for opening the IP Line devices, values: H323, SIP, both
#
DTMFmode
possible options:
OutOfBand, inband, rfc2833
#
Capability posiblities:
g711Alaw
g711Mulaw
gsm
gsmEFR
g723_5_3k
g723_6_3k
g729a
g729ab
t38UDPFax
#
Note: if you want to run the demo with coder g729 use:
g729a for running with VAD disable
and 729ab for running with VAD enable
#
Caution:
If capability is g711Alaw /Mulaw ==> FramesPerPkt = 10,20,30.
G711 frame per packet defines the packet size in
milliseconds
If capability is g723_5_3k / 6_3k ==> FramesPerPkt = 1, 2, 3 .
FrameSize isn't needed, default= 30ms.
If capability is gsm ==> FramesPerPkt = 1, 2, 3 .
FrameSize isn't needed, default= 20ms.
If capability is gsmEFR ==> FramesPerPkt = 1, 2, 3 .
FrameSize isn't needed, default= 20ms.
If capability is g729a ==> FramesPerPkt = 3, 4 .
FrameSize isn't needed, default= 10ms.
VAD disable, the VAD parameter is ignored
If capability is g729ab ==>FramesPerPkt = 3, 4 .
FrameSize isn't needed, default= 10ms.
VAD enable, the VAD parameter is ignored

##

ipProtocolName = H323
DTMFmode = inBand
Channel = 1-120
{
 Capability
 {
TxType = g711Alaw
TxFramesPerPkt = 30
TxVAD = 0
RxType = g711Alaw
RxFramesPerPkt = 30
RxVAD = 0

 TxType = g711Mulaw
 TxFramesPerPkt = 20
 TxVAD = 0
 RxType = g711Mulaw
 RxFramesPerPkt = 20
 RxVAD = 0

TxType = t38UDPFax
 }

18 IP Media Server for HMP Demo Guide — July 2005

Preparing to Run the Demo

 MediaAlarmLostPackets
 {
 Threshold = 20 # Threshold value
 DebounceOn = 10000 # Threshold debounce ON
 DebounceOff = 10000 # Threshold debounce OFF
 Interval = 1000 # Threshold Time Interval (ms)
 PercentSuccess = 60 # Threshold Success Percent
 PercentFail = 40 # Threshold Fail Percent
 }

 MediaAlarmJitter
 {
 Threshold = 60 # Threshold value
 DebounceOn = 20000 # Threshold debounce ON
 DebounceOff = 60000 # Threshold debounce OFF
 Interval = 5000 # Threshold Time Interval (ms)
 PercentSuccess = 60 # Threshold Success Percent
 PercentFail = 40 # Threshold Fail Percent
 }

MediaAlarmResetAlarmState = 0

}

3.2 Compiling and Linking

Compile the IP Media Server demo project within one of the following environments:

Windows

To compile the IP Media Server demo on a Windows system, use Microsoft* Visual Studio* 6.0
with Service Pack 5.

Set IPMediaServer as the active project and build.

Linux

To compile the IP Media Server demo on a Linux system, use gcc version 3.2.3.

To compile the entire project, go to the directory
$(INTEL_DIALOGIC_DIR)/demos/IPMediaServer and issue the commands:

make clean
make

To compile an individual module, go to the specific module directory (for example,
$(INTEL_DIALOGIC_DIR)/demos/IPMediaServer/Modules/FaxModule for the fax module), and
issue the commands:

make clean
make

IP Media Server for HMP Demo Guide — July 2005 19

44.Running the Demo

This chapter discusses how to run the IP Media Server for HMP demo. It contains the following
topics:

• Starting the Demo . 19

• Demo Options . 19

• Using the Demo . 20

• Stopping the Demo . 24

4.1 Starting the Demo

The demo executable file for the IP Media Server for HMP can be started as follows:

Windows

From a command prompt window, change to the directory:
$(INTEL_DIALOGIC_DIR)\Demos\IPMediaServer\Release

Type IPMediaServer to run the IP Media Server for HMP demo using the default settings.

Linux

Change to the directory:
$(INTEL_DIALOGIC_DIR)/demos/IPMediaServer/Release

Type IPMediaServer to run the IP Media Server for HMP demo using the default settings.

4.2 Demo Options

To specify certain options at run-time, launch the demo from a command line, using any of the
switches listed in Table 1.

Table 1. Command Line Switches

Switch Action Default

-c<filename> Configuration file name -cIPMediaServer.cfg

-e<encoding type> Sets the encoding type:
• m – mu-law
• a – A-law

-em

-h or ? Prints the command syntax to the screen Off

20 IP Media Server for HMP Demo Guide — July 2005

Running the Demo

Example

The following example shows how to launch the demo from a command line with options:
IPMediaServer -n64 -cmyconfig.cfg -ea

This command launches the demo with 64 channels, using the myconfig.cfg configuration file and
A-law encoding.

4.3 Using the Demo

This section describes how to use the IP Media Server for HMP demo and contains the following
topics:

• Keyboard Commands

• Using the Media Server

4.3.1 Keyboard Commands

The demo always waits for input from the keyboard. While the demo is running, you may enter any
of the commands listed in Table 2.

4.3.2 Using the Media Server

The IP Media Server for HMP demo allows the caller to interact with a series of voice menus, using
the telephone keypad to enter an option. Basic operations include playing a pre-recorded message,
recording a new message, sending or receiving a fax, and barge-in for CSP. Each menu prompts the
caller to select an action by pushing a key. The call state within which the menu is called is
indicated by the square brackets. Figure 1 shows the voice prompt flow, grouping the prompts by
feature (voice, fax, CSP).

Note: By default, the fax demo is turned off. This feature may be enabled when tested with T.38 capable
IP endpoints. To do this, uncomment the line:
 TxType = t38UDPFax
in the Capability section of the IPMediaServer.cfg file (or add the line if not present as a comment).

-n<n> Sets the number of channels The lesser of Voice Devices
or IP devices

-q Activates Quality of Service Disabled

Table 1. Command Line Switches (Continued)

Table 2. Runtime Keyboard Commands

Command Function

q or Q or Ctrl+c Terminates the application

IP Media Server for HMP Demo Guide — July 2005 21

Running the Demo

Main Menu [Main_Menu]

1 - Voice Mail
2 - Fax
3 - Conferencing (not supported in HMP 1.x)
4 - CSP Barge-in
* - Quit

Voice Mail Menu [Voicemail_Menu]

1 - Record Message
2 - Listen to message from a mailbox
* - Quit

Send Message Prompt [SendMsg_Menu]

Enter Mailbox Number - between 101 - 299
* - Quit

Start Record Prompt [Record_Menu]

2 - Start Record
Press 2 at end of message to stop recording (at end, Stop Record Prompt is played)
* - Quit

Stop Record Prompt [StopRec_Menu]

2 - Discard Message and re-record message to same mailbox
3 - Confirm Message [Save_Confirm]
4 - Listen to Message (and replay Stop Record Prompt)
* - Quit without saving

Confirm Message Saved [StopRec_Menu]

1 - Record a message
2 - Listen to a message from a mailbox
* - Quit

Listen to Message Prompt [ListenMsg_Menu]

Enter Mailbox Number - between 101 - 299 (Recorded message is played)
* - Quit

Stop Listen Prompt [Listening]

2 - Discard message and quit
* - Save message and quit

22 IP Media Server for HMP Demo Guide — July 2005

Running the Demo

Fax Menu [Fax_Menu]

1 - Send fax (to the IP Media Server demo)
2 - Receive fax (sent from the IP Media Server demo)
* - Quit

Send Fax Prompt [Send_Fax_Menu]

Dial fax number - between 101 - 299
* - Quit

Fax Sent Prompt [Fax_Sent_Menu]

Announces that fax was sent and repeats Fax Menu:
1 - Send fax
2 - Receive fax
* - Quit

Receive Fax Menu [Receive_Fax_Menu]

Dial fax number - between 101 - 299
* - Quit

Fax Received Prompt [Fax_Received_Menu]

Announces that fax was received and repeats Fax Menu:
1 - Send fax
2 - Receive fax
* - Quit

CSP Prompt [CSP_Menu]

Say something to barge in (new file will be created with barged-in message) or press any DTMF.

IP Media Server for HMP Demo Guide — July 2005 23

Running the Demo

Figure 1. Demo Voice Menu Flowchart

Main Menu
Select one of the following:
1 - Voice Mail
2 - Fax
4 - CSP
* - Quit

Voice Mail Prompt
1 - Record Message
2 - Listen to message
 from a mailbox
* - Quit

1

Listen Message Prompt
Enter Mailbox Number
 (Message is played)
* - Quit

Send Message Prompt
Enter Mailbox Number
* - Quit

1 2

Start Record Prompt
2 - Start/Stop Record

* - Quit

Stop Record Prompt
2 - Discard message and
 re-record message to
 same mailbox
3 - Confirm message
4 - Replay message
* - Quit

Confirm Message Saved
Prompt
Confirm message
Return to Voice Mail prompt

3

Replay Message
Replay Stop Record
Prompt

4

2

Stop Listen Prompt
2 - Discard message
 and quit
* - Save message and
 quit

Fax Menu
1 - Send fax (to server)
2 - Receive fax (from server)
* - Quit

CSP Prompt
Say something to barge in
or press any DTMF

4

2

2

Send Fax Prompt
Dial server mailbox
number to store fax in
* - Quit

Fax Sent Prompt
Announces fax sent
Repeat Fax menu

Receive Fax Prompt
Dial fax number that will
receive fax from server
* - Quit

Fax Received Prompt
Announces fax received
Repeat Fax menu

21

24 IP Media Server for HMP Demo Guide — July 2005

Running the Demo

4.4 Stopping the Demo

The IP Media Server demo runs until it is terminated. Press “q” or “Q” to terminate the demo
application.

IP Media Server for HMP Demo Guide — July 2005 25

55.Demo Details

This chapter discusses the IP Media Server for HMP demo in more detail. It contains the following
topics:

• Files Used by the Demo. 25

• Programming Model . 28

• Threads . 39

• Initialization. 39

• Event Handling . 41

• Typical Scenario . 42

5.1 Files Used by the Demo

This section lists the files used by the IP Media Server demo. It contains the following information

• Demo Source Code Files

• PDL Files

5.1.1 Demo Source Code Files

In Windows, the IP Media Server demo files listed in Table 3 are located within:
$(INTEL_DIALOGIC_DIR)\Demos\IPMediaServer

In Linux, the IP Media Server demo files listed in Table 3 are located within:
$(INTEL_DIALOGIC_DIR)/demos/IPMediaServer

Table 3. Files in IPMediaServer Folder Used by the IP Media Server Demo

Sub-Directory (if any) File Name Purpose

CConfig.cpp Implements the operations of the Configuration
class

CConfig.h Function prototype for config.cpp

CEventRouter.cpp Implements the operations of the EventRouter class

CEventRouter.h Function prototype for ceventrouter.cpp

IPMediaServer.dsp Visual C++ project file

IPMediaServer.dsw Visual C++ project workspace

main.cpp Contains the main function and the WaitForKey

main.h Function prototype for main.cpp

makefile Top-level make file (Linux only)

26 IP Media Server for HMP Demo Guide — July 2005

Demo Details

In Windows, the IP Media Server demo files listed in Table 4 are located within:
$(INTEL_DIALOGIC_DIR)\Demos\IPMediaServer\Modules

In Linux, the IP Media Server demo files listed in Table 4 are located within:
$(INTEL_DIALOGIC_DIR)/demos/IPMediaServer/Modules

Release 200.tif Sample fax file

Release unavConf.vox Voice file

Release cspPrompt.vox Voice file

Release errorInput.vox Voice file

Release faxMenu.vox Voice file

Release faxReceived.vox Voice file

Release faxSent.vox Voice file

Release IPMediaServer.cfg Demo configuration file

Release IPMediaServer.exe Demo executable

Release listenMenu.vox Voice file

Release mainMenu.vox Voice file

Release receivefaxMenu.vox Voice file

Release savecCnfirm.vox Voice file

Release sendfaxMenu.vox Voice file

Release sendMsg.vox Voice file

Release startRec.vox Voice file

Release stopListen.vox Voice file

Release stopRec.vox Voice file

Release thankYou.vox Voice file

Release unavCsp.vox Voice file

Release unavFax.vox Voice file

Release unavMenu.vox Voice file

Release voicemailMenu.vox Voice file

Table 3. Files in IPMediaServer Folder Used by the IP Media Server Demo (Continued)

Sub-Directory (if any) File Name Purpose

Table 4. Files in Modules Folder Used by the IP Media Server Demo

Sub-Directory File Name Purpose

common Defines.h Definitions and structures for the demo

common Interfaces.h Interfaces used in the demo

common Parameters.h Parameters used in the demo

common makefile Module make file (Linux only)

FaxModule CFaxDevice.cpp Implements the operations of the CFaxDevice class

IP Media Server for HMP Demo Guide — July 2005 27

Demo Details

FaxModule CFaxDevice.h Function prototype for cfaxdevice.cpp

FaxModule CFaxModule.cpp Implements the operations of the CFaxModule class

FaxModule CFaxModule.h Function prototype for cfaxmodule.cpp

FaxModule CFaxStateMachine.cpp Implements the operations of the
CFaxStateMachine class

FaxModule CFaxStateMachine.h Function prototype for cfaxstatemachine.cpp

FaxModule FaxModule.dsp Visual C++ project file

FaxModule makefile Module-level make file (Linux only)

FaxModule\Release or
FaxModule/Release

FaxModule.lib Compiled Fax Module library

IPModule CIPDevice.cpp Implements the operations of the CIPDevice class

IPModule CIPDevice.h Function prototype for cipdevice.cpp

IPModule CIPMBoard.cpp Implements the operations of the CIPMBoard class

IPModule CIPMBoard.h Function prototype for cipmboard.cpp

IPModule CIPModule.cpp Implements the operations of the CIPModule class

IPModule CIPModule.h Function prototype for cipmodule.cpp

IPModule CIPStateMachine.cpp Implements the operations of the CIPStateMachine
class

IPModule CIPStateMachine.h Function prototype for cipstatemachine.cpp

IPModule CIPTBoard.cpp Implements the operations of the CIPTBoard class

IPModule CIPTBoard.h Function prototype for ciptboard.cpp

IPModule CMediaAlarms.cpp Implements the operations of the CMediaAlarms
class

IPModule CMediaAlarms.h Function prototype for cmediaalarms.cpp

IPModule IPModule.dsp Visual C++ project file

IPModule makefile Module-level make file (Linux only)

IPModule\Release or
IPModule/Release

IPModule.lib Compiled IP Module library

VoiceModule CCSPDevice.cpp Implements the operations of the CCSPDevice class

VoiceModule CCSPDevice.h Function prototype for ccdspdevice.cpp

VoiceModule CMailBoxBtil.cpp Implements the operations of the CMailBoxUtil class

VoiceModule CMailBoxUtil.h Function prototype for cmailboxutil.cpp

VoiceModule CVoiceBoard.cpp Implements the operations of the voiceBoard class

VoiceModule CVoiceBoard.h Function prototype for cvoiceboard.cpp

VoiceModule CVoiceDevice.cpp Implements the operations of the CVoiceDevice
class

VoiceModule CVoiceDevice.h Function prototype for cvoicedevice.cpp

Table 4. Files in Modules Folder Used by the IP Media Server Demo (Continued)

Sub-Directory File Name Purpose

28 IP Media Server for HMP Demo Guide — July 2005

Demo Details

5.1.2 PDL Files

In Windows, the PDL files listed in Table 5 are located within the directory:
$(INTEL_DIALOGIC_DIR)\Demos\Shared\pdl_win

In Linux, the PDL files listed in Table 5 are located within the directory:
$(INTEL_DIALOGIC_DIR)/demos/Shared/pdl_Linux

5.2 Programming Model

This section describes the IP Media Server for HMP demo architecture in the following topics:

• Module Structure

• EventRouter

• Interfaces

• Classes

VoiceModule CVoiceModule.cpp Implements the operations of the CVoiceModule
class

VoiceModule CVoiceModule.h Function prototype for cvoicemodule.cpp

VoiceModule CVoiceStateMachine.cpp Implements the operations of the
CVoiceStateMachine class

VoiceModule CVoiceStateMachine.h Function prototype for cvoicestatemachine.cpp

VoiceModule VoiceModule.dsp Visual C++ project file

VoiceModule makefile Module-level make file (Linux only)

VoiceModule\Release or
VoiceModule/Release

VoiceModule.lib Compiled Voice Module library

Table 4. Files in Modules Folder Used by the IP Media Server Demo (Continued)

Sub-Directory File Name Purpose

Table 5. PDL Files Used by the IP Media Server Demo

Sub-Directory (if any) File Name Purpose

iptransport.cpp PDL IP transport functions

iptransport.h Function prototype for iptransport.cpp

pdl.c Platform dependency functions

pdl.h Function prototype for pdl.c

pdl.ver PDL version information

pdl_win.dsp PDL Visual C project file

pdl_win.dsw PDL Visual C project workspace

makefile PDL make file (Linux only)

release psl_win.lib Compiled PDL library

IP Media Server for HMP Demo Guide — July 2005 29

Demo Details

5.2.1 Module Structure

The IP Media Server for HMP demo uses a modular architecture, in which each technology (IP,
voice, fax, CSP)) is wrapped inside a module so that a particular technology can be easily added or
removed.

The system contains three modules:

• IP module that serves as the front end to communicate with the IP network

• Voice module to provide voice service

• Fax module to provide fax service

The system also contains a software component, the EventRouter, to connect the modules. The
basic architecture of the system is illustrated in Figure 2.

Figure 2. IP Media Server Demo Architecture

Each module is composed of four elements:

• Board

• Device

• State Machine (call control)

• Wrapper

The Wrapper acts like a manager, receiving requests from the EventRouter and distributing the
request to the boards or devices. A device can have one or multiple state machines attached to it.
Each state machine represents one call.

EventRouter
Board Device

State Machine

IP Module

Board Device

State Machine

Voice Module

Board Device

State Machine

Fax Module

Board Device

State Machine

User Module

30 IP Media Server for HMP Demo Guide — July 2005

Demo Details

5.2.2 EventRouter

The EventRouter is responsible for communicating with the modules. It does the following:

• Maintains routing tables

• Retrieves event data from the SRL and routes it to a module for processing

• Forwards event process result to another module if so requested.

Figure 3. EventRouter

Retrieve event
data from GC

library

For which
technology?

Fax

Voice Module Fax Module
IP Module

I P

Voice

Forward result to destination

result

result result

No

Yes

result.destination
= NONE ?

IP Media Server for HMP Demo Guide — July 2005 31

Demo Details

5.2.3 Interfaces

The modular architecture implements a unified interface that allows replacement of modules by
including new header files and adjusting routing statements.

A module is treated by the EventRouter as a block box. It has three types of APIs:

Initialization
• Init() – for initializing a module
• GetNumOfDevices() – returns the number of devices available to the application
• GetDeviceHandle() – returns a device handle
• GetDeviceXmitSlot() – returns a device transmit timeslot
• SetDeviceReceiveSlot() – sets a device receive timeslot

Runtime
• ProcessEvent() – processes event data

Termination
• Exit() – exits a module

5.2.4 Classes

This section describes the classes contained in the demo and within each module. Each module
contains three classes: board, device, and state machine.

Table 6. Application Classes

Class Name Interface

CConfig
• Responsible for parsing configuration file and

populating configuration variables in the program.

ParseConfigFile()
• Parses configuration file

ChannelNumber()
• Gets the number of channels that are the

minimum of the number of voice lines and the
number of IP lines

IPParms()
• Returns configured IP parameters

VoiceParms()
• Returns configured voice parameters

FaxParms()
• Returns configured fax parameters

32 IP Media Server for HMP Demo Guide — July 2005

Demo Details

CEventRouter

Responsible for connecting all the modules. It does
the following:

• Maintains routing tables
• Retrieves event data from the SRL and routes

them to modules
• Gets event process results from the modules and

routes them to other modules if the destination is
not NONE

Init()
• Initializes the fax module, voice module, and IP

module
• Builds event routing tables

Exit()
• Terminates the IP module, voice module, and fax

module

ProcessEvent()
• Retrieves event data from Global Call and routes

them to a module for processing
• Routes processing result to other module(s) for

further processing.

Table 6. Application Classes (Continued)

Class Name Interface

Table 7. IP Module Classes

Category Class Name Interface

Module CIPModule
• Interacts with CIPBoard and CIPDevice.
• Exports IP module functions to

CEventRouter.

Note: The public functions in this class can
be accessed by classes outside the
IP module.

Init()
• Starts host based IP protocol
• Creates and initializes IPT (virtual) board

objects
• Creates and initializes IPM (media)

board objects
• Creates and initializes IP device objects

Exit()
• Terminates and closes IPT boards
• Terminates and closes IPM boards
• Terminates and closes IP devices

ProcessEvent()
• Receives event data from the event

router and distributes them, based on
handles, to IPT boards, IPM boards or IP
devices

GetNumOfDevices()
• Returns number of IP devices engaging

in the communication

GetDeviceHandle()
• Returns an IP device handle

GetDeviceXmitSlot()
• Returns the transmit timeslot of an IP

device

SetDeviceReceiveSlot()
• Sets the receiving timeslot of an IP

device

IP Media Server for HMP Demo Guide — July 2005 33

Demo Details

Board CIPTBoard
• Interacts with the Global Call library to

handle IP virtual boards

Note: The public function in this class
should only be accessed by classes
inside the IP module.

Init()
• Opens IPT (virtual) board and sets board

parameters

Exit()
• Closes IPT (virtual) board

ProcessEvent()
• Processes IPT (virtual) board events

GetNumOfDevicesOnBoard()
• Returns the number of IPT devices

(signaling devices) on the board

CIPMBoard
• Interacts with the Global Call library to

handle IP media boards

Note: The public functions in this class
should only be accessed by classes
inside the IP module.

Init()
• Opens IP media boards

Exit()
• Closes IP media boards

ProcessEvent()
• Processes IP media board events

GetNumOfDevices()
• Returns number of IPM devices on the

board

Table 7. IP Module Classes (Continued)

Category Class Name Interface

34 IP Media Server for HMP Demo Guide — July 2005

Demo Details

Device CIPDevice
• Handles IP device operations, such as

making/dropping calls, sending H.323
messages, making timeslot connections,
etc.

• Holds CIPStateMachine (or call control)

Note: The public functions in this class
should only be accessed by classes
inside the IP module.

Init()
• Opens an IP device. If successful,

creates an IP state machine. If QoS is
enabled, creates a media alarm object.

Exit()
• Deletes IP state machine
• Deletes media alarm object
• Closes IP devices

ProcessEvent()
• Processes IP device events

Connect()
• Allows IP device to listen to its receiving

timeslot

Disconnect()
• Allows IP device to unlisten to its

receiving timeslot

GetDeviceHandle()
• Returns IP device handle

GetXmitSlot()
• Returns IP device transmit timeslot

SetDeviceReceiveSlot()
• Sets IP device receiving timeslot

SetFaxHandle()
• Sets fax device handle associated with

the device

GetFaxHandle()
• Returns fax device handle associated

with the device

State
Machine

CIPStateMachine
• Handles IP events and maintains IP

state machine(s)

Note: The public functions in this class
should only be accessed by the
classes inside the IP module.

Init()
• Initializes the IP state machine

Exit()
• Terminates the IP state machine

ProcessEvent()
• Processes IP call events

Table 7. IP Module Classes (Continued)

Category Class Name Interface

IP Media Server for HMP Demo Guide — July 2005 35

Demo Details

Table 8. Voice Module Classes

Category Class Name Interface

Module CVoiceModule
• Interacts with CVoiceBoard and

CVoiceDevice.
• Exports Voice module functions to

CEventRouter.

Note: The public functions in this class can
be accessed by classes outside the
Voice module.

Init()
• Opens and initializes voice board objects
• Opens and initializes voice device objects

Exit()
• Terminates and closes voice boards
• Terminates and closes voice devices

ProcessEvent()
• Receives event data from the event router

and distributes them, based on
devicehandles, to voice boards or voice
devices for processing

Board CVoiceBoard
• Interacts with the voice library to handle

voice boards

Note: The public function in this class
should only be accessed by classes
inside the Voice module.

Init()
• Opens voice board

Exit()
• Closes voice board

ProcessEvent()
• Processes voice board events

36 IP Media Server for HMP Demo Guide — July 2005

Demo Details

Device CVoiceDevice
• Handles voice device operations, such

as playing, recording, tone detection,
and tone generation

• Holds CVoiceStateMachine

Note: The public functions in this class
should only be accessed by classes
inside the Voice module.

Init()
• Opens the voice device. If successful,

creates voice state machine.

Exit()
• Deletes the voice state machine from the

voice device
• Closes voice device

ProcessEvent()
• Processes voice device events

Connect()
• Allows IP device to listen to its receiving

timeslot

Play()
• Plays a vox file

OnPlayComplete()
• Replays a vox file when it has finished

playing

Record()
• Records voice to a vox file

GetDigits()
• Retrieves DTMF digits

GetDigitCount()
• Returns the number of retrieved DTMF

digits

GetDigitString()
• Returns retrieved DTMF string

Connect()
• Allows the voice device to listen to its

receiving timeslot

Disconnect()
• Allows voice device to unlisten to its

receiving timeslot

GetStoppedReason()
• Tells why a played voice file stops

GetDeviceHandle()
• Returns voice device handle

GetXmitSlot()
• Returns voice device transmit timeslot

SetReceiveSlot()
• Sets voice device receiving timeslot

Table 8. Voice Module Classes (Continued)

Category Class Name Interface

IP Media Server for HMP Demo Guide — July 2005 37

Demo Details

State
Machine

CVoiceStateMachine
• Handles voice events and maintains

voice state machine(s)

Note: The public functions in this class
should only be accessed by the
classes inside the voice module.

Init()
• Opens vox files
• Creates mailbox utility object that

manages mailboxes

Exit()
• Closes vox files
• Deletes mailbox utility object that

manages mailboxes

ProcessEvent()
• Processes voice events

Misc CMailBoxUtil
• Provides utility function to manage

mailboxes

Note: The public functions in this class
should only be accessed by the
classes inside the voice module

InitMailBoxes()
• Initializes mailboxes

CheckAndConvertDigits()
• Checks if the extension number is in

allowed range. If it is, converts it into an
integer.

GetMailBox()
• Checks if the mailbox is ready to be used.

If it is, gets the mailbox.

CreateMailBoxFileName()
• Creates a filename for the mailbox

FreeMailBox()
• Frees the mailbox for future use

Table 8. Voice Module Classes (Continued)

Category Class Name Interface

Table 9. Fax Module Classes

Category Class Name Interface

Module CFaxModule
• Interacts with CFaxDevice.
• Exports Fax module functions to

CEventRouter.

Note: The public functions in this class can
be accessed by classes outside the
Fax module.

Init()
• Creates fax device objects

Exit()
• Deletes fax device objects

GetNumOfDevices()
• Gets the number of fax resources

GetDeviceHandle()
• Returns fax device handle

TSUserEventProcessEvent()
• Processes fax events from the Global

Call library

ProcessEvent()
• Processes the events from the other

modules

38 IP Media Server for HMP Demo Guide — July 2005

Demo Details

Board CFaxBoard
• Interacts with the fax library to handle fax

boards
• The public function in this class should

only be accessed by classes inside the
Fax module

Init()
• Open fax board.

Exit()
• Close fax board.

ProcessEvent()
• Processes fax board events.

Device CFaxDevice
• Handles fax device operations, such as

sending fax, receiving fax, etc.
• Holds CFaxStateMachine

Note: The public functions in this class
should only be accessed by classes
inside the Fax module.

Init()
• Opens the fax device. If successful,

creates fax state machine.

Exit()
• Deletes the fax state machine from the

fax device
• Closes fax device

SetIott()
• Sets up iott for the fax file

SetFaxState()
• Sets initial fax state before fax

transmission

SendFax()
• Starts to send a fax file

RecvFax()
• Starts to receive a fax file

OpenFaxFile()
• Gets fax file handle

CloseFaxFile()
• Closes fax file handle

GetDeviceHandle()
• Returns fax device handle

ToLower_String()
• Converts a string from uppercase to

lowercase

SetFaxFileName()
• Names the fax file to be sent or received

GetFaxFileName()
• Returns the name of the fax file

SetNeighborHandle()
• Sets IP device handle that is currently

connected with the fax device

GetNeighborHandle()
• Gets IP device handle that is currently

connected with the fax device

GetFaxStateMachineObject()
• Returns fax state machine object

Table 9. Fax Module Classes (Continued)

Category Class Name Interface

IP Media Server for HMP Demo Guide — July 2005 39

Demo Details

5.3 Threads

The IP Media Server for HMP demo operates with two threads, as shown in Figure 4.

Figure 4. IP Media Server Demo Threads

The threads are created as follows:

1. The first (main) thread is created by the demo application to get the keyboard input.

2. The second thread is an SRL thread, created as a result of the demo application calling
PDLsr_enblhdlr(). All Global Call events are received through the SRL.

5.4 Initialization

This section describes the IP Media Server for HMPdemo initialization as shown in Figure 5.

A system is started in the following sequence:

1. The application creates CConfig() to parse the configuration file.

2. The application creates CEventRouter() to start the Event Router, which, in turn, starts the
Fax module, the Voice module, and the IP module. When a module is started, it initializes its
boards, devices and state machines.

State Machine CFaxStateMachine
• Handles fax events and maintains fax

state machine

Note: The public functions in this class
should only be accessed by the
classes inside the fax module.

Init()
• Initializes fax state machine

Exit()
• Terminates fax state machine

ProcessEvent()
• Processes fax events

Table 9. Fax Module Classes (Continued)

Category Class Name Interface

Keyboard

Main Thread
SRL

Sub-Thread

IPR4/GC

40 IP Media Server for HMP Demo Guide — July 2005

Demo Details

After all the modules are started, the EventRouter starts to build a static routing table that maps
voice devices to IP devices. It is important that each IP device has a dedicated voice resource, so
that when an IP channel is connected (an incoming call is answered) the user can get a voice
prompt immediately.

If the initialization should fails, the application shuts down. The shutdown sequence is the reverse
of the initialization sequence.

Figure 5. System Initialization

Application Configuration

Event Router

1. Parse .cfg file

2. Start router

Voice Module Voice Board

Voice State
Machine

Voice Device

7. Start Voice Module 8. Start Voice Board

9. Start VoiceDevice

10. Start Voice State
Machine

IP Module IP Board

IP State Machine

IP Device

11. Start IP Module 12. Start IP Board

13. Start IP Device

14. Start IP State Machine

Fax Module Fax Board

Fax State Machine

Fax Device

3. Start Fax Module 4. Start Fax Board

5. Start Fax Device

6. Start Fax State Machine

IP Media Server for HMP Demo Guide — July 2005 41

Demo Details

5.5 Event Handling

This section describes how the IP Media Server for HMP demo handles events. It contains the
following topics:

• Event Mechanism

• Handling Keyboard Input Events

• Handling SRL Events

• Handling Application Exit Events

• TSUsrEvent Structure

5.5.1 Event Mechanism

The IP Media Server demo uses the SRL mechanism to retrieve events. When an event occurs, SRL
calls event handlers automatically. All events are received by the SRL and then passed to the
CallbackHdlr() function for handling.

In the initialization phase of the demo, the main() function sets up the call-back handler, by calling
PDLsr_enbhdlr().

5.5.2 Handling Keyboard Input Events

There is an endless loop {while(0)} in the main() function in the Main.cpp file. In that loop, the
application waits forever for a keyboard event by calling the waitForKey() function. The event
must be handled immediately and event-specific information should be retrieved before the next
call to waitForKey().

5.5.3 Handling SRL Events

When the R4/Global Call event is received, the application performs the following:

1. Get METAEVENT by calling gc_GetMetaEvent().

2. Get channel ID through device handle to channel mapping.

3. Get device type through device handle to type mapping.

4. Route meta event to the module specified by device type.

5.5.4 Handling Application Exit Events

Normal application exit events, such as pressing either q or Q, don’t enter the SRL. The main()
function calls PDLSetApplicationExitPath() before initialization. In Linux, this function sets the
signals (SIGINT, SIGTERM, SIGABRT) for making the appropriate exit from the application. In
Windows, this function enables the detection of CTRL_CLOSE_EVENT (closing the window).

42 IP Media Server for HMP Demo Guide — July 2005

Demo Details

5.5.5 TSUsrEvent Structure

The TSUsrEvent structure is used by the demo modules to return event processing results to the
event router.

The TSUserEvt structure is defined as follows:

typedef struct
{
 int event;
 TDeviceType destination;
 int lineDevice;
 long xmitSlot;
 long neighborDevice;
 char dialString[MAX_STRING_LENGTH]}
TSUserEvent;

The fields of the TSUserEvt structure are described as follows:

event
the name of a user-defined event, such as USR_CONNECTED, USR_SENDFAX, etc.

destination
the name of the module that this event is destined for. Possible vavues are IP, VOICE, FAX, or
NONE.

lineDevice
the device handle in this module. It will be later used by the Event Router as an index to find its
counterpart in the destination module.

xmitSlot
an integer that normally indicates a time slot number

neighborDevice
the neighbor device handle

dialString
a char string that is normally filled with a DTMF dialing string

5.6 Typical Scenario

This section describes a typical scenario for sending a fax, which involves all the IP Media Server
demo modules.

Call Offered

When an incoming call is received by the server, the IP module answers the call until the call is
connected.

IP Media Server for HMP Demo Guide — July 2005 43

Demo Details

Figure 6. Typical Scenario: Call Offered

CEventRouter CIPModule CIPDevice
CIPState
Machine

CVoiceModule

GCEV_OFFERED

GCEV_OFFERED

GCEV_OFFERED

GCEV_EXTENSIONCMPLT

GCEV_EXTENSIONCMPLT

GCEV_EXTENSIONCMPLT

GCEV_CONNECTED

GCEV_CONNECTED

GCEV_CONNECTED

call gc_extension()
to get call related

information

Call
gc_AnswerCall()

Call gc_listen() to
listen to

voice device

source=IP
destination=VOICE

event=
USR_CONNECTED

Format TSUserEvent
to request voice
module to play

prompt

44 IP Media Server for HMP Demo Guide — July 2005

Demo Details

Play Prompts

After the call is connected, the Voice module is notified to play prompts and accept DTMF.

Figure 7. Typical Scenario: Play Prompts

CEventRouter CIPModule CIPDevice
CIPState
Machine

CVoiceModule

USR_CONNECTED

TDX_PLAY (finish playing main menu)

TDX_GETDIG (press "2" to play fax menu)

CVoiceDevice
CVoiceState

Machine

USR_CONNECTED

USR_CONNECTED

1. Call dx_listen()
to listen to IP
device
2. Call dx_play() to
play Main_Menu

TDX_PLAY

TDX_PLAY

Call dx_getdig() to
detect digitsTDX_GETDIG "2"

TDX_GETDIG "2"

TDX_GETDIG "1"

TDX_GETDIG "1"

TDX_GETDIG (press "1" to play send fax menu)

TDX_GETDIG (press "101" to select fax box number)

TDX_GETDIG "101"

TDX_GETDIG "101"

Format TSUserEvent to
request fax module to
send fax to faxbox 101

source=IP
destination=FAX
event=
USR_SENDFAX
dialString="101"

Call dx_play() to
play

Send_Fax_Menu

Call dx_play() to
play Fax_Menu

IP Media Server for HMP Demo Guide — July 2005 45

Demo Details

Fax Mailbox

The user selects to send a fax to mailbox “101”. The Fax module is requested to send a fax.

Figure 8. Typical Scenario: Fax Mailbox

CEventRouter CIPModule CFaxModule

USR_SENDFAX "101"

CFaxDevice
CFaxState
Machine

USR_SENDFAX
"101"

...

source=FAX
destination=IP

event=
USR_ESTABLISH
FAXSESSIONREQ

Format TSUserEvent
to request IP module
to get ready to send

fax

Find an available
fax device and put it

into busy Q

46 IP Media Server for HMP Demo Guide — July 2005

Demo Details

Establish Fax Session

The Fax module requests the front end to get ready to send a fax. If the front end is IP, it should first
move from an RTP port to a UDP port in order to send a fax.

Figure 9. Typical Scenario: Establish Fax Session

CEventRouter CIPModule CIPDevice
CIPState
Machine

1. Call gc_setConfigData() to set to manual (fax) mode.
2. Call gc_unlisten () to disconnect from voice
3. Call gc_setUserInfo() to set T.38 info.
4. Call gc_extension() to start T.38 session

USR_ESTABLISHFAXSESSIONREQ

USR_ESTABLISHFAXSESSIONREQ

USR_ESTABLISHFAXSESSIONREQ

GCEV_EXTENSION

GCEV_EXTENSION

GCEV_EXTENSION

source=IP
destination=FAX
event=
USR_ESTABLISHF
AXSESSIONCONF

Format TSUserEvent to
reply to fax module that

T.38 session is
established

IP Media Server for HMP Demo Guide — July 2005 47

Demo Details

Fax Session Established

The Fax module gets a reply from the front end that the fax session has been established.

Figure 10. Typical Scenario: Fax Session Established

CEventRouter CIPModule CFaxModule CFaxDevice
CFaxState
Machine...

source=FAX
destination=IP
event=
USR_CLOSEFAX
SESSIONREQ

Format TSUserEvent
to request IP module
to close fax session

USR_ESTABLISHFAXSESSIONCONF

USR_ESTABLISHFAXSESSIONCONF

TFX_FAXSEND

TFX_FAXSEND

Call fx_sndfax() to
send fax

Close fax file

48 IP Media Server for HMP Demo Guide — July 2005

Demo Details

Fax Sent

The fax is sent. The front end is requested to close the fax session.

Figure 11. Typical Scenario: Fax Sent

CEventRouter CIPModule CIPDevice
CIPState
Machine

1. Call gc_stop() to stop T.38 session
2. Call gc_extension () to start audio session
3. Call gc_listen() listen to voice prompts

USR_CLOSEFAXSESSIONREQ

USR_CLOSEFAXSESSIONREQ

USR_CLOSEFAXSESSIONREQ

GCEV_EXTENSION

GCEV_EXTENSION

GCEV_EXTENSION

source=IP
destination=FAX
event=
USR_CLOSEFAX
SESSIONCONF

Format TSUserEvent to
reply to fax module that
T.38 session is closed

IP Media Server for HMP Demo Guide — July 2005 49

Demo Details

Fax Session Closed

The Fax module gets a reply from the front end that the fax session has been closed.

Figure 12. Typical Scenario: Fax Session Closed

Fax Complete

The Voice module gets a reply from the Fax module that a fax has been sent.

Figure 13. Typical Scenario: Fax Complete

CEventRouter CIPModule CFaxModule CFaxDevice
CFaxState
Machine...

USR_CLOSEFAXSESSIONCONF

USR_CLOSEFAXSESSIONCONF

source=FAX
destination=VOICE
event=
USR_FAXSENT

USR_CLOSEFAXSESSIONCONF

Format TSUserEvent
to notify voice

module fax is sent

CEventRouter CIPModule CIPDevice
CIPState
Machine

CVoiceModule CVoiceDevice
CVoiceState

Machine

Call dx_play() to
play fax menu

USR_FAXCOMPLETE

USR_FAXCOMPLETE

USR_FAXCOMPLETE

50 IP Media Server for HMP Demo Guide — July 2005

Demo Details

IP Media Server for HMP Demo Guide — July 2005 51

Glossary

Codec: see COder/DECoder

COder/DECoder: A circuit used to convert analog voice data to digital and digital voice data to analog audio.

Computer Telephony (CT): Adding computer intelligence to the making, receiving, and managing of
telephone calls.

DTMF: Dual-Tone Multi-Frequency

Dual-Tone Multi-Frequency: A way of signaling consisting of a push-button or touch-tone dial that sends out a
sound consisting of two discrete tones that are picked up and interpreted by telephone switches (either PBXs or
central offices).

Emitting Gateway: called by a G3FE. It initiates IFT service for the calling G3FE and connects to a Receiving
Gateway.

E1: The 2.048 Mbps digital carrier system common in Europe.

FCD file: An ASCII file that lists any non-default parameter settings that are necessary to configure a DM3
hardware/firmware product for a particular feature set. The downloader utility reads this file, and for each
parameter listed generates and sends the DM3 message necessary to set that parameter value.

Frame: A set of SCbus/CT Bus timeslots which are grouped together for synchronization purposes. The period of
a frame is fixed (at 125 µsec) so that the number of time slots per frame depends on the SCbus/CT Bus data rate.

G3FE: Group 3 Fax Equipment. A traditional fax machine with analog PSTN interface.

Gatekeeper: An H.323 entity on the Internet that provides address translation and control access to the network
for H.323 Terminals and Gateways. The Gatekeeper may also provide other services to the H.323 terminals and
Gateways, such as bandwidth management and locating Gateways.

Gateway: A device that converts data into the IP protocol. It often refers to a voice-to-IP device that converts an
analog voice stream, or a digitized version of the voice, into IP packets.

H.323: A set of International Telecommunication Union (ITU) standards that define a framework for the
transmission of real-time voice communications through Internet protocol (IP)-based packet-switched networks.
The H.323 standards define a gateway and a gatekeeper for customers who need their existing IP networks to
support voice communications.

IAF: Internet Aware Fax. The combination of a G3FE and a T.38 gateway.

IFP: Internet Facsimile Protocol

IFT: Internet Facsimile Transfer

52 IP Media Server for HMP Demo Guide — July 2005

International Telecommunications Union (ITU): An organization established by the United Nations to set
telecommunications standards, allocate frequencies to various uses, and hold trade shows every four years.

Internet: An inter-network of networks interconnected by bridges or routers. LANs described in H.323 may be
considered part of such inter-networks.

Internet Protocol (IP): The network layer protocol of the transmission control protocol/Internet protocol
(TCP/IP) suite. Defined in STD 5, Request for Comments (RFC) 791. It is a connectionless, best-effort packet
switching protocol.

Internet Service Provider (ISP): A vendor who provides direct access to the Internet.

Internet Telephony: The transmission of voice over an Internet Protocol (IP) network. Also called Voice over IP
(VoIP), IP telephony enables users to make telephone calls over the Internet, intranets, or private Local Area
Networks (LANs) and Wide Area Networks (WANs) that use the Transmission Control Protocol/Internet Protocol
(TCP/IP).

ITU: See International Telecommunications Union.

Jitter: The deviation of a transmission signal in time or phase. It can introduce errors and loss of synchronization
in high-speed synchronous communications.

NIC (Network Interface Card): Adapter card inserted into computer that contains necessary software and
electronics to enable a station to communicate over network.

PCD file: An ASCII text file that contains product or platform configuration description information that is used
by the DM3 downloader utility program. Each of these files identifies the hardware configuration and firmware
modules that make up a specific hardware/firmware product. Each type of DM3-based product used in a system
requires a product-specific PCD file.

PSTN: see Public Switched Telephone Network

Public Switched Telephone Network: The telecommunications network commonly accessed by standard
telephones, key systems, Private Branch Exchange (PBX) trunks and data equipment.

Reliable Channel: A transport connection used for reliable transmission of an information stream from its
source to one or more destinations.

Reliable Transmission: Transmission of messages from a sender to a receiver using connection-mode data
transmission. The transmission service guarantees sequenced, error-free, flow-controlled transmission of messages
to the receiver for the duration of the transport connection.

RTCP: Real Time Control Protocol

RTP: Real Time Protocol

SIP: Session Initiation Protocol: an Internet standard specified by the Internet Engineering Task Force (IETF) in
RFC 3261. SIP is used to initiate, manage, and terminate interactive sessions between one or more users on the
Internet.

IP Media Server for HMP Demo Guide — July 2005 53

T1: A digital transmission link with a capacity of 1.544 Mbps used in North America. Typically channeled into 24
digital subscriber level zeros (DS0s), each capable of carrying a single voice conversation or data stream. T1 uses
two pairs of twisted pair wires.

TCP: see Transmission Control Protocol

Terminal: An H.323 Terminal is an endpoint on the local area network which provides for real-time, two-way
communications with another H.323 terminal, Gateway, or Multipoint Control Unit. This communication consists
of control, indications, audio, moving color video pictures, and/or data between the two terminals. A terminal may
provide speech only, speech and data, speech and video, or speech, data, and video.

Transmission Control Protocol: The TCP/IP standard transport level protocol that provides the reliable, full
duplex, stream service on which many application protocols depend. TCP allows a process on one machine to send
a stream of data to a process on another. It is connection-oriented in the sense that before transmitting data,
participants must establish a connection.

UDP: see User Datagram Protocol

UDPTL: Facsimile UDP Transport Layer protocol

User Datagram Protocol: The TCP/IP standard protocol that allows an application program on one machine to
send a datagram to an application program on another machine. Conceptually, the important difference between
UDP datagrams and IP datagrams is that UDP includes a protocol port number, allowing the sender to distinguish
among multiple destinations on the remote machine.

VAD: Voice Activity Detection

54 IP Media Server for HMP Demo Guide — July 2005

IP Media Server for HMP Demo Guide — July 2005 55

Index

A
application classes 31

application exit events 41

C
CallbackHdlr() 41

CConfig() 39

CEventRouter() 39

ChannelNumber() 31

CheckAndConvertDigits() 37

classes 31
application classes 31
Fax module classes 37
IP module classes 32

CloseFaxFile() 38

command-line switches 19

commands, keyboard 20

compiling and linking 18

configuration files, editing 15

Connect() 34, 36

CreateMailBoxFileName() 37

D
Disconnect() 34, 36

E
editing configuration files 15

event handling 41
application exit events 41
keyboard input events 41
SRL events 41
TSUsrEvent structure 42

event mechanism 41

EventRouter 30

Exit() 31

F
Fax module classes 37

FaxParms() 31

files, used by demo 25

FreeMailBox() 37

G
gc_GetMetaEvent() 41

GetDeviceXmitSlot() 31, 32

GetDigitCount() 36

GetDigits() 36

GetDigitString() 36

GetFaxFileName() 38

GetFaxHandle() 34

GetFaxStateMachineObject() 38

GetMailBox() 37

GetNeighborHandle() 38

GetNumOfDevices() 31, 32, 33, 37

GetNumOfDevicesOnBoard() 33

GetStoppedReason() 36

GetXmitSlot() 34, 36

H
hardware requirements 13

I
Init() 31

initialization 39

InitMailBoxes() 37

interfaces 31

IP module classes 32

ipmediaserver.cfg configuration file 15

IPParms() 31

K
keyboard commands 20

keyboard input events, handling 41

L
linking 18

56 IP Media Server for HMP Demo Guide — July 2005

M
main() 41

module structure 29

O
OnPlayComplete() 36

OpenFaxFile() 38

P
ParseConfigFile() 31

PDL files 28

PDLSetApplicationExitPath() 41

PDLsr_enbhdlr() 41

PDLsr_enblhdlr() 39

Play() 36

ProcessEvent() 31

programming model 28

R
Record() 36

RecvFax() 38

requirements
hardware 13
software 13

runtime commands, keyboard 20

S
scenarios 42

call offered 43
establish fax session 46
fax complete 49
fax mailbox 45
fax sent 48
fax session closed 49
fax session established 47
play prompts 44

SendFax() 38

SetDeviceReceiveSlot() 31, 32, 34

SetFaxFileName() 38

SetFaxHandle() 34

SetFaxState() 38

SetIott() 38

SetNeighborHandle() 38

SetReceiveSlot() 36

software requirements 13

source code files 25

SRL events, handling 41

starting the demo 19

stopping the demo 24

switches, command line 19

system initialization 40

system requirements 13

T
threads 39

ToLower_String() 38

TSUserEventProcessEvent() 37

TSUsrEvent structure 42

U
using the media server 20

V
voice menu flowchart 23

Voice Module classes 35

VoiceParms() 31

W
waitForKey() 41

	Contents
	Figures
	Tables
	Revision History
	About This Publication
	1. Demo Description
	2. System Requirements
	2.1 Hardware Requirements
	2.2 Software Requirements

	3. Preparing to Run the Demo
	3.1 Editing Configuration Files
	3.1.1 Configuration File Location
	3.1.2 Editing the IPMediaServer.cfg Configuration File

	3.2 Compiling and Linking

	4. Running the Demo
	4.1 Starting the Demo
	4.2 Demo Options
	4.3 Using the Demo
	4.3.1 Keyboard Commands
	4.3.2 Using the Media Server

	4.4 Stopping the Demo

	5. Demo Details
	5.1 Files Used by the Demo
	5.1.1 Demo Source Code Files
	5.1.2 PDL Files

	5.2 Programming Model
	5.2.1 Module Structure
	5.2.2 EventRouter
	5.2.3 Interfaces
	5.2.4 Classes

	5.3 Threads
	5.4 Initialization
	5.5 Event Handling
	5.5.1 Event Mechanism
	5.5.2 Handling Keyboard Input Events
	5.5.3 Handling SRL Events
	5.5.4 Handling Application Exit Events
	5.5.5 TSUsrEvent Structure

	5.6 Typical Scenario

	Glossary
	Index

